Team Wants to Terraform Mars Using Cyanobacteria

terraform-marsArtist concept of a Living Mars. Credit: Kevin Gill

Mars received quite a bit of attention last week as NASA revealed for the first time they found liquid water in brine deposits. Using a combination of spectral readings and computerized analysis, they learned the most valuable chemical to life is not only there, but flowing. This in turn has sparked the debate over whether colonization of Mars and its subsequent terraforming might be more than a speculative fiction dream.
One of the most important needs in terraforming is microbial life. Granted, some people already believe bacteria may exist in that liquid water (perchlorate-respiring organisms, to be exact). But in order to have a sustained planet, a much larger biodiversity would be needed. Thankfully, studies here on Earth focusing on the potential for microbial colonization of Mars have revealed some very interesting phenomena that may one day allow us to be microbial farmers on Mars.
The first hints came over 25 years ago when NASA suggested microbes could survive in specialized niche zones known as evaporites. These areas of crystalized brine would be technically dry in nature but could still have water in the form of hydrated crystals allowing bacteria to grow. In a 2003 study examining such an environment, the gypsum flats of Guerrero Negro, researchers found microbial life living in stasis, just waiting to be awoken with water. This adds credence to the plausibility of life in the Martian brine and the potential for harvesting such microbes for other purposes.

Team Wants to Use Cyanobacteria


A team composed of students and volunteer scientists from the University of Applied Science and the Technical University in Darmstadt, Germany, call their project “Cyano Knights”. Basically, they plan to seed Mars’ atmosphere with cyanobacteria so it can convert Mars’ most abundant gas (CO2, which accounts for 96% of the Martian atmosphere) into something breathable by humans.

Working out of the laboratory of Cell Culture Technology of the University of Applied Science, the Cyano Knights selected cyanobacteria because of its extreme ruggedness. Here on Earth, the bacteria lives in conditions that are hostile to other life forms, hence why they seemed like the perfect candidate.

The other reason for sending cyanobacteria to Mars, in advance of humans, is the biological function they perform. As an organism that produces oxygen gas through photosynthesis to obtain nutrients, cyanobacteria are thought to have played a central role in the evolution of Earth’s atmosphere.

It is estimated that 2.7 billion years ago, they were pivotal in converting it from a toxic fume to the nitrogen and oxygen-rich one that we all know and love. This, in turn, led to the formation of the ozone layer which blocks out harmful UV rays and allowed for the proliferation of life.

According to their project description, the cyanobacteria, once introduced, will “deliver oxygen made of their photosynthesis, reducing carbon dioxide and produce an environment for living organisms like us. Furthermore, they can supply food and important vitamins for a healthy nutrition.”

How Feasible is Terraforming?


Despite our best efforts, we haven’t managed to find another planet that’s quite as homey as Earth. No other world has the same combination of water, a breathable atmosphere, and just the right amount of sunlight to warm us up without broiling us to a crisp.

But according to a few big dreamers in the field of astronomy, we’re not restricted to living out the rest of our species’ lifetime here on Earth. To no one’s surprise, Carl Sagan was the first to propose “terraforming” Venus, or re-shaping it in Earth’s image, in 1961. Since then, our discovery that Venus’s atmosphere is full of thick, noxious sulfuric acid has ruled out the third planet from the Sun as a viable “second Earth.”

Instead, Mars became the target for serious contemplations of terraforming. This speculation ramped up as we learned more about Mars’s previously habitable conditions. Scientists believe that Mars had a much more Earth-like environment millions of years in its past, with a thick, sheltering atmosphere and abundant water. This makes Mars the best candidate for terraforming.

Source 1, 2, 3


Fabio Evagelista is a Brazilian writer.

Crossed Paths is the first book of the Myra-Hati trilogy, an epic adventure in a post-apocalyptic world, for the lovers of sci-fi / fantasy genre. This is the author’s first work published in America.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s